Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic solutions for nonautonomous discrete-time neural networks

In this paper, we theoretically prove the existence of periodic solutions for a nonautonomous discrete-time neural networks by using the topological degree theory. Sufficient conditions are also obtained for the existence of an asymptotically stable periodic solution. As a special case, we obtain the existence of a fixed point to the corresponding autonomous discrete-time neural networks which ...

متن کامل

Periodic solution for a delay nonlinear population equation with feedback control and periodic external source

In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides  the extension of  some previous results obtained in other studies. We give a illustrative e...

متن کامل

Periodic Solutions for a Delayed Population Model on Time Scales

This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established. Keywords—Coincidence degree, continuation theorem, periodic solutions, time scales

متن کامل

Periodic solutions of a logistic type population model with harvesting

Article history: Received 12 February 2010 Available online 13 April 2010 Submitted by P. Sacks

متن کامل

Positive Periodic Solutions of Functional Discrete Systems and Population Models

where, A(n) = diag[a1(n),a2(n), . . . ,ak(n)], aj is ω-periodic, f (n,x) : Z×Rk →Rk is continuous in x and f (n,x) is ω-periodic in n and x, whenever x is ω-periodic, ω ≥ 1 is an integer. Let be the set of all real ω-periodic sequences φ : Z→ Rk. Endowed with the maximum norm ‖φ‖ = maxθ∈Z ∑k j=1 |φj(θ)| where φ = (φ1,φ2, . . . ,φk), is a Banach space. Here t stands for the transpose. If x ∈ , t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2006

ISSN: 0377-0427

DOI: 10.1016/j.cam.2005.04.017